Pre-class Warm-up!!!

Which of the following is the slope field for the equation $d y / d x=x / y$?

C.

Another question. Which of these is the direction field for $x^{\prime}=y, y^{\prime}=x$?

Also b.

7.1 First order linear systems of equations

We learn:

- what is a linear system of equations
- how to convert a high order differential equation into a system of first order equations
- occasionally, how to convert a system of equations into a higher order differential equation
- a theorem about existence of solutions to systems of equations
- what are direction fields

Vocabulary:

- direction field, solution curve or trajectory, phase plane portrait
- homogeneous means the same thing that it did before, except in a new context.
(

Page 372 question 13:
Solve $x^{\prime}=-2 y, y^{\prime}=2 x, x(0)=1, y(0)=0$. implicit in this is that x, y are functions of t
Solution: From eq. 1: $x^{\prime \prime}=-2 y^{\prime}$
From equ $2 x^{\prime \prime}=-4 x, \quad x^{\prime \prime}+4 x=0$
Char. poly: $r^{2}+4$, roots $\pm 2 i$
Solution $x=A \cos 2 t+B \sin 2 t$

$$
\begin{aligned}
& x^{\prime}=-2 A \sin 2 t+2 B \cos 2 t=-2 y \\
& y=A \sin 2 t-B \cos 2 t \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=A\left[\begin{array}{l}
\cos 2 t \\
\sin 2 t
\end{array}\right]+B\left[\begin{array}{l}
\sin 2 t \\
-\cos 2 t
\end{array}\right]}
\end{aligned}
$$

When $t=0 \quad\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]=A\left[\begin{array}{l}1 \\ 0\end{array}\right]+B\left[\begin{array}{c}0 \\ -1\end{array}\right]$
so $\beta=0, A=1$

$$
\left.\begin{array}{l}
50 \\
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\cos 2 t \\
\sin 2 t
\end{array}\right]
$$

first order
A linear system of differential equations has the form

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
p_{11} & \cdots & p_{1 n} \\
\vdots & & \vdots \\
p_{n 1} & \cdots & p_{n n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

where $x_{i}, x_{i j}, f_{i}$ are all functions of t.
Example:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{rr}
0 & -2 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Write this as $X^{\prime}=P X+F$
Solutions are vector functions of t The $P_{i j}$ need not be linear functions oft

The system is homogeneous if $F=\left[\begin{array}{c}f_{1} \\ \vdots \\ f_{x}\end{array}\right] \approx\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$

Page 371 question 2:
Transform the given differential equation into an equivalent system of first order differential equations.

$$
x^{\prime \prime \prime \prime \prime}+6 x^{\prime \prime}-3 x^{\prime}+x=\cos 3 t
$$

Solution: Write $x_{1}=x, x_{2}=x_{1}^{\prime}, x_{3}=x_{2}^{\prime}$

$$
\begin{aligned}
x_{4}=x_{3}^{\prime}, \quad x_{4}^{\prime} & =-6 x^{\prime \prime}+3 x^{\prime}-x+\cos 3 t \\
& =-6 x_{3}+3 x_{2}-x_{1}+\cos 3 t
\end{aligned}
$$

This is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]^{\prime}=\left[\begin{array}{l}x_{2} \\ x_{3} \\ x_{4} \\ -x_{1}+3 x_{2}-6 x_{3}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \cos 3 t\end{array}\right]$

$$
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 3 & -6 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos 3 t
\end{array}\right]
$$

Page 371 question 10:
Same with $x^{\prime \prime}=(1-y) x, y^{\prime \prime}=(1-x) y$
(Note: this system wont be linear)
Solution

$$
\begin{array}{ll}
x_{1}=x & x_{2}=x_{1}^{\prime} \\
y_{1}=y & y_{2}=y_{1}^{\prime}
\end{array}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{2} \\
y_{2}
\end{array}\right]^{2} \simeq\left[\begin{array}{c}
x_{2} \\
\left(1-y_{1}\right)_{1} \\
y_{2} \\
\left(1-x_{1}\right) y_{1}
\end{array}\right]
$$

Section 1.6 question 46: Solve $x y^{\prime \prime}+y^{\prime}=4 x$
This time it's significant there is no term in y.
Put $v=\frac{d y}{d x}=y^{\prime}$

$$
y^{\prime \prime}=\frac{d r}{d x}
$$

Substitute: $x \frac{d v}{d x}+v=4 x$

Question: Recall 1.6 question 46 above! What does the equation $x y^{\prime \prime}+y^{\prime}=4 x$ look like when we write it as a linear system?
a. $\left[\begin{array}{l}v \\ y\end{array}\right]^{\prime}=\left[\begin{array}{c}v \\ -\frac{v}{x}\end{array}\right]+\left[\begin{array}{l}0 \\ 4\end{array}\right]$
c. $\left[\begin{array}{l}y \\ v\end{array}\right]^{\prime}=\left[\begin{array}{c}-\frac{v}{x} \\ y\end{array}\right]+\left[\begin{array}{l}0 \\ 4\end{array}\right]$
$\sqrt{b} \cdot\left[\begin{array}{l}y \\ v\end{array}\right]^{\prime}=\left[\begin{array}{c}v \\ -\frac{v}{x}\end{array}\right]+\left[\begin{array}{l}0 \\ 4\end{array}\right]$
d. None of the above.

$$
\frac{d V}{d x}+\frac{1}{x} V=4
$$

We can solve this
a. by separating the variables
b. as a first order linear equation
c. by making another substitution

Then solve the equation for v that antes.

Page 372 question 19:
Find the solution, and draw a direction field for $x^{\prime}=-y, y^{\prime}=13 x+4 y ; x(0)=0, y(0)=3$.

At each value of (x, y) draw a vector $\left(x^{\prime}, y^{\prime}\right)$.
In this case, when $13 x+4 y=0$ then $y^{\prime}=0$

The slope of each rector's

$$
\frac{y^{\prime}}{x^{\prime}}=\frac{d y}{d t} / \frac{d x}{d t}=\frac{d y}{d x}
$$

A curve following the vectors is called a solution curve or trajectory

Solution:

$$
\begin{aligned}
& x^{\prime \prime}=-y^{\prime}=-13 x-4 y=-13 x+4 x^{\prime} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-e^{-2 t} \sin 3 t \\
e^{-2 t} 3 \cos 3 t+2 \sin 3 t
\end{array}\right]}
\end{aligned}
$$

Theorem 1.
Given a first order system $X^{\prime}=P X+F$ and a vector B, if the functions P and F are continuous around some number $t=a$, then there is a unique solution satisfying $X(a)=B$.

